Building Roof Model Influenced by Environmental Climate

  • Marwahyudi Sahid University Surakarta, Surakarta, Indonesia
  • Dian Muhammad Rifai Universitas sahid Surakarta
  • Dea Syahnas Paradita Universitas sahid Surakarta
  • Indy Rafia Universitas sahid Surakarta
  • Dina Kristiana Seftianingsih Universitas sahid Surakarta
  • Henny Trihastuti Hasana Universitas sahid Surakarta
  • Khairunissa Chandra Kinanti Universitas sahid Surakarta

Abstrak

The roof is the main thing in a building that functions to protect the building and occupants. Indonesia has gable and trapezium roof models. Both have advantages and disadvantages. The advantages and disadvantages are managed to become a strength that complements the building. The roof consists of three parts, first the roof frame, second the roof covering frame and the covering material. The roof frame is often called the truss and is made of wood, iron, concrete or mild steel. The covering frame is often called a batten made of bamboo wood or mild steel. The roof is often called tiles made from clay, concrete or metal. Each roof construction has different slope requirements.  The slope angle will affect the maintenance, durability and beauty of the building. Determining the angle must be careful and adjusted to the characteristics of the roof covering. The characteristics of the roof angle are influenced by the impermeability of the covering material. The more impermeable it is, the slower the angle will be. The climate also affects the existing roof model. The angle of the roof will be influenced by the environmental climate. The climate affects the use of roof angles.

Referensi

Afrina, C., Rasyid, S., Nazira, H., Oktaviani, A., Yoelanda, A. M., Syukrinur, S., & Elvi, E. (2023). Pentingnya Desain Interior terhadap Kenyamanan Pengunjung Perpustakaan. Jurnal Pustaka Ilmiah, 9(1), 35. https://doi.org/10.20961/jpi.v9i1.67849

Badan Standardisasi Indonesia. (2020). SNI 1727:2020 Beban desain minimum dan Kriteria terkait untuk bangunan gedung dan struktur lain. Jakarta, 8, 1–336.

Badan Standarisasi Nasional. (2010). SNI 03-1726-2010 Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung. Kementrian PUPR.

Badan Standarisasi Nasional. (2020). Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung. 8.

DL, A. M. A. M. G. (2023). The Spirit of The Value of the Diagonal Shear Stress of the Masonry on. International Journal of Society Development and Engagement, 7(1), 68–75.

Ernawati, Tumingan, & Nugroho, B. (2022). Evaluasi Kuat Tekan Beton Menggunakan Hammer Test Dan Ultrasonic Pulse Velocity (Upv) Pada. Jurnal Ilmiah Teknik Sipil Politeknik Negeri Samarinda, 14(1), 16–22.

Hadi, J. C. (2020). PENERAPAN DESAIN RUANG KEBERANGKATAN DOMESTIK ( PELABUHAN TANJUNG EMAS SEMARANG ). 01(2), 1–11.

Islam, M. S., Alwashali, H., Sen, D., & Maeda, M. (2020). A proposal of Visual Rating method to set the priority of detailed evaluation for masonry infilled RC building. Bulletin of Earthquake Engineering, 18(4), 1613–1634. https://doi.org/10.1007/s10518-019-00763-5

Kałuża, M. (2020). Effectiveness of shear strengthening of walls made using aac blocks - laboratory test results. Archives of Civil Engineering, 66(2), 33–44. https://doi.org/10.24425/ace.2020.131794

Kartikawati, D. (2024). View of Evaluasi Aspek Penghawaan Alami Terkait Sistem Ventilasi Bangunan Berdasarkan Standar Nasional Indonesia (SNI).pdf. Gewang.

Kementerian PUPR. (2023). Bangunan Gedung Cerdas. Kementerian PUPR, 1–24.

Marwahyudi, M. (2019). Typologi Kerusakan Masonry Infilled Frame. MoDuluS: Media Komunikasi Dunia Ilmu Sipil, 1(1), 11. https://doi.org/10.32585/modulus.v1i1.376

Marwahyudi, M. (2020). Stiffness Dinding Batu Bata Meningkatkan Kekuatan Struktur. Astonjadro, 9(1), 30. https://doi.org/10.32832/astonjadro.v9i1.2840

Micro- and Macro-Structural Analysis. (1993). Developments in Geotechnical Engineering, 66, 279–348. https://doi.org/10.1016/B978-0-444-88911-9.50014-0

Miha Timocevic. (2006). Earthquake Resistant Design of Masonry Building. Emparial Collage Press.

Nurdiah, E. A., & Hariyanto, A. D. (2013). Struktur Rangka Atap Rumah Tradisional Sumba (Roof Structure of a Traditional Sumba House). Semnas Reinterpretasi Identitas Arsitektur Nusantara, 117–124.

Parekh, R. (2024). Automating the design process for smart building technologies. World Journal of Advanced Reasearch and Reviews, 23(August), 1213–1234.

PUPR. (2018). Peraturan Menteri Pekerjaan Umum Dan Perumahan Rakyat Republik Indonesia Nomor 22/PRT/M/2018 Tentang Pembangunan Bangunan Gedung Negara. JDIH Kementerian PUPR, 1–20. https://jdih.pu.go.id/detail-dokumen/2594/1

PUPR, K. (1991). SNI 03-2447-1991 Spesifikasi Rumah Tumbuh Rangka Beratap Dng Komponen Beton Pracetak.pdf.

PUPR, K. (2021). Bangunan Gedung Hijau. Sekretariat Negara Republik Indonesia, 1(078487A), 483. http://www.jdih.setjen.kemendagri.go.id/

Rezaie, A., Godio, M., Achanta, R., & Beyer, K. (2022). Machine-learning for damage assessment of rubble stone masonry piers based on crack patterns. Automation in Construction, 140(June), 104313. https://doi.org/10.1016/j.autcon.2022.104313

Tomaževič, M. (2009). Shear resistance of masonry walls and Eurocode 6: Shear versus tensile strength of masonry. Materials and Structures/Materiaux et Constructions, 42(7), 889–907. https://doi.org/10.1617/s11527-008-9430-6

Ullah, S., Farooq, S. H., Usman, M., Ullah, B., Hussain, M., & Hanif, A. (2022). In-Plane Seismic Strengthening of Brick Masonry Using Steel and Plastic Meshes. Materials, 15(11). https://doi.org/10.3390/ma15114013

Wibowo, A. P. (2021). Pemodernan Atap Rumah Tradisional Jawa sebagai Upaya Pelestarian Kearifan Lokal. Sinektika: Jurnal Arsitektur, 18(2), 141–147. https://doi.org/10.23917/sinektika.v18i2.15337

Zameeruddin, M., & Sangle, K. K. (2021). Performance-based Seismic Assessment of Reinforced Concrete Moment Resisting Frame. Journal of King Saud University - Engineering Sciences, 33(3), 153–165. https://doi.org/10.1016/j.jksues.2020.04.005

Zięba, J., & Skrzypczak, I. (2021). Multi-stage analysis of reliability of an example masonry construction. https://doi.org/10.24425/ace.2021.137168

Diterbitkan
2024-12-16