Unveiling Causal Complexity in Mathematics Achievement: A Research Design Using Fuzzy-set Qualitative Comparative Analysis (fs/QCA)

  • Gerry Filiestianto Universitas Pendidikan Indonesia

Abstract

Mathematics achievement is a critical indicator of educational success and a key determinant for future STEM careers. However, national assessments in Indonesia reveal persistent learning gaps in student numeracy. Existing research predominantly relies on linear models (e.g., SEM) that estimate the 'net effect' of influencing factors, thereby overlooking complex causal configurations. This paper addresses this methodological gap. The primary result of this study is a comprehensive research design that employs fuzzy-set Qualitative Comparative Analysis (fs/QCA) to analyze secondary data from the Indonesian National Assessment. The proposed methodology is designed to identify multiple, distinct pathways—or 'causal recipes'—to success. The main contribution, therefore, is a robust framework that moves beyond linear analysis, offering a more nuanced foundation for developing targeted and context-specific educational policies

References

Ayebale, L., Habaasa, G., & Tweheyo, S. (2020). Factors affecting students' achievement in mathematics in secondary schools in developing countries: A rapid systematic review. Statistical Journal of the IAOS, 36(4), 1013–1026. http://dx.doi.org/10.3233/SJI-200713
Burrus, J., & Moore, R. (2016). The incremental validity of beliefs and attitudes for predicting mathematics achievement. Learning and Individual Differences, 50, 246–251. https://doi.org/10.1016/j.lindif.2016.08.019
Davadas, S. D., & Lay, Y. F. (2020). Contributing factors of secondary students’ attitude towards mathematics. European Journal of Educational Research, 9(2), 599–610. https://doi.org/10.12973/eu-jer.9.2.489
Kemdikbud. (2024). Rapor Pendidikan Provinsi Jawa Barat Tahun 2024. Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi.
Kusdinar, A., & Kismiantini. (2022). The role of students' non-cognitive factors and school resources in predicting mathematics achievement using PISA 2018 Indonesia data. AIP Conference Proceedings, 2659, 060007. http://dx.doi.org/10.1063/5.0111125
Pusmendik. (2023). Codebook Rapor Publik AN 2023 Peserta Didik SMA. Pusat Asesmen Pendidikan, Kemdikbudristek.
Ragin, C. C. (2008). Redesigning social inquiry: Fuzzy sets and beyond. University of Chicago Press.
Rasoolimanesh, S. M., & Olya, H. (2025). Necessary Configuration Analysis (NConfA): a new multivariate approach. Service Industries Journal. https://doi.org/10.1080/02642069.2025.2459264
Tóth, Z., Henneberg, S. C., & Naudé, P. (2017). Addressing the ‘Qualitative’ in fuzzy set Qualitative Comparative Analysis: The Generic Membership Evaluation Template. Industrial Marketing Management, 63, 192–204. http://dx.doi.org/10.1016/j.indmarman.2016.10.008
Wakhata, R., Mutarutinya, V., & Balimuttajjo, S. (2022). Secondary school students’ attitude towards mathematics word problems. Humanities and Social Sciences Communications, 9(1), 441. http://dx.doi.org/10.1057/s41599-022-01449-1
Wang, F., King, R. B., & Leung, S. O. (2023). Why do East Asian students do so well in mathematics? A machine learning study. International Journal of Science and Mathematics Education, 21(4), 1187–1206. http://dx.doi.org/10.1007/s10763-022-10262-w
Wille, E., Stoll, G., Gfrörer, T., & Trautwein, U. (2020). It Takes Two: Expectancy-Value Constructs and Vocational Interests Jointly Predict STEM Major Choices. Contemporary Educational Psychology, 61, 101859. http://dx.doi.org/10.1016/j.cedpsych.2020.101858
Zhao, T., & Perez-Felkner, L. (2022). Perceived abilities or academic interests? Longitudinal high school science and mathematics effects on postsecondary STEM outcomes by gender and race. International Journal of STEM Education, 9(1), 47. https://doi.org/10.1186/s40594-022-00356-w
Published
2025-07-29
How to Cite
Filiestianto, G. (2025). Unveiling Causal Complexity in Mathematics Achievement: A Research Design Using Fuzzy-set Qualitative Comparative Analysis (fs/QCA). ICEETE Conference Series, 3(1), 244-248. https://doi.org/10.36728/iceete.v3i1.251