Edge Detection Algorithm and Image Classification in Digital Image Processing

  • Diyah Ruswanti Sahid Surakarta University
  • Christian Roy Purnama Sahid Surakarta University
  • Mayang Gumelar Sahid Surakarta University

Abstract

Digital image processing is one of the fields that is constantly evolving in tandem with artificial intelegence and machine learning. The purpose of this study is to perform a systematic review of various methods used in digital citra classification and detection, as well as to compare the effectiveness of traditional algorithms like Sobel, Prewitt, and Canny with deep learning-based algorithms like Convolutional Neural Networks (CNN). The Systematic Literature Review (SLR) method is used to identify, evaluate, and analyze 78 related articles that provide preliminary data wit inclusive and exclucive criteria from 300 articles. The primary focus includes edge detection, citra-based object classification (fruit, leaf, face, and medical image), and fitness entrapping techniques such as GLCM, LBP, HSV, and fraktal. The study's findings indicate that deep learning, specifically CNN, consistently provides higher accuracy in classification than traditional methods, despite requiring a larger computer power. It is hoped that this research would serve as a guide for developing more effective and efficient digital image processing systems in a variety of application domains, including pharmaceutical, medical, digital safety, and creative industries.

References

Alfita, R., Ibadillah, A. F., & Prianto, A. (2022). Identifikasi Nilai Nominal Uang Kertas Berdasarkan Warna Berbasis Image Processing Menggunakan Metode Template Matching. Jurnal Teknik Elektro Dan Komputer TRIAC, 9(1), 28–32. https://doi.org/10.21107/triac.v9i1.12487
Amrullah, Y. (2025). Penerapan SVM Berbasis GLCM Dan HSV Untuk Identifikasi Kesegaran Daging. Jurnal Sosial Dan Sains, 5(5), 1408–1417. https://doi.org/10.59188/jurnalsosains.v5i5.32244
Ansari, M. A., Kurchaniya, D., & Dixit, M. (2017). A Comprehensive Analysis of Image Edge Detection Techniques. International Journal of Multimedia and Ubiquitous Engineering, 12(11), 1–12. https://doi.org/10.14257/ijmue.2017.12.11.01
Ardhito, D. Y., Susilo, D., Ruswanti, D., Retnoningsih, D., Kristianto, A., & Setiyowati. (2024). Employee Attendance Through Face Recognition Using the HAAR Cascade Classifier Method. 2024 6th International Conference on Cybernetics and Intelligent System (ICORIS), 1–4. https://doi.org/10.1109/ICORIS63540.2024.10903906
Aryawan, I. P. A., I Nyoman Purnama, & Ketut Queena Fredlina. (2023). Analisis Perbandingan Algoritma Cnn Dan Svm Pada Klasifikasi Ekspresi Wajah. Jurnal Teknologi Informasi Dan Komputer, 9(4), 399–408. https://doi.org/10.36002/jutik.v9i4.2545
Avci, I. (2022). Threshold Values of Different Classical Edge Detection Algorithms. Traitement Du Signal, 39(5), 1775–1780. https://doi.org/10.18280/ts.390536
BenHajyoussef, A., & Saidani, A. (2024). Recent Advances on Image Edge Detection. In F. Cuevas, P. L. Mazzeo, & A. Bruno (Eds.), Digital Image Processing. IntechOpen. https://doi.org/10.5772/intechopen.1003763
Benhamza, K., Merabti, H., & Seridi, H. (2013). Adaptive edge detection using ant colony. 2013 8th International Workshop on Systems, Signal Processing and Their Applications (WoSSPA), 197–202. https://doi.org/10.1109/WoSSPA.2013.6602361
Chaudhari, B., & Gulve, A. (2025). Edge Detection using Enhanced Ant Colony System Algorithm and Standard Deviation in Medical Images. Procedia Computer Science, 260, 308–315. https://doi.org/10.1016/j.procs.2025.03.206
David, Edy Victor Haryanto, S., & Febriana. (2022). Modified Local Updates of the Ant Colony Optimization Algorithm for Image Edge Detection. 2022 10th International Conference on Cyber and IT Service Management, CITSM 2022, 8–13. https://doi.org/10.1109/CITSM56380.2022.9935991
Farid Naufal, M. (2021). Perbandingan, Analisis Svm, Algoritma Untuk, dan CNN. Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(2), 311–318. https://doi.org/10.25126/jtiik.202184553
Fatimah, N. S., & Agustin, S. (2025). Klasifikasi Citra Batik Menggunakan Local Binary Pattern (LBP) dan Support Vector Machine (SVM). Jurnal Algoritma, 22(1), 185–196. https://doi.org/10.33364/algoritma/v.22-1.2208
Firdaus, R. I., Sugiharto, W. H., & Ghozali, M. I. (2025). Implementasi Convolutional Neural Network Dalam Sistem Otomatis Pemilahan Sampah Infeksius Berbasis Citra Digital. SisInfo, 7(1), 11–22. https://doi.org/10.37278/sisinfo.v7i1.1052
Fuadah, Y. N., UBAIDULLAH, I. D., IBRAHIM, N., TALININGSING, F. F., SY, N. K., & PRAMUDITHO, M. A. (2022). Optimasi Convolutional Neural Network dan K-Fold Cross Validation pada Sistem Klasifikasi Glaukoma. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 10(3), 728. https://doi.org/10.26760/elkomika.v10i3.728
Gansar Suwanto, Adam, R. I., & Garno. (2021). Identifikasi Citra Digital Jenis Beras Menggunakan Metode Anfis dan Sobel. Jurnal Informatika Polinema, 7(2), 123–128. https://doi.org/10.33795/jip.v7i2.406
Habibi, R., & Artha, G. R. M. (2023). SLR Systematic Literature Review: Metode Penilaian Kinerja Karyawan Menggunakan Human Performance Technology. Journal of Applied Computer Science and Technology, 4(2), 100–107. https://doi.org/10.52158/jacost.v4i2.511
Harefa, O. (2020). Metode Penerapan Laplacian Of Gaussian (LOG) Dalam Mendeteksi Tepi Citra Pada Penyakit Kanker Payudara. Jurnal Pelita Informatika, 8(4), 454–456. https://www.ejurnal.stmik-budidarma.ac.id/index.php/pelita/article/download/2438/1714
Hartono, S., Perwitasari, A., & Sujaini, H. (2020). Komparasi Algoritma Nonparametrik untuk Klasifikasi Citra Wajah Berdasarkan Suku di Indonesia. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 6(3), 337. https://doi.org/10.26418/jp.v6i3.43268
Haryono, R. (2020). Penerapan Metode Laplacian Of Gaussian Dalam Mendeteksi Tepi Citra Pada Penyakit Meningitis. KLIK (Kajian Ilmiah Informatika & Komputer), 1(1), 20–26. https://djournals.com/klik/article/view/21/5
Hassan, A., Refaat, M., & Hemeida, A. (2022). Image classification based deep learning: A Review. Aswan University Journal of Sciences and Technology, 2(1), 11–35. https://doi.org/10.21608/aujst.2022.259887
Hassan, A., Refaat, M., Hemeida, A., Agarap, A. F., Tan, Y. C., Duarte, L., Teodoro, A. C., Yilmaz, A., Demircali, A. A., Kocaman, S., Uvet, H., Peryanto, A., Yudhana, A., Umar, R., Pangestu, A. R., Basuki Rahmat, Fetty Tri Anggraeny, Naufal, M. F., Kusuma, S. F., … Sujaini, H. (2020). Implementasi Algoritma Cnn Untuk Klasifikasi CitraLahan Dan Perhitungan Luas. Jurnal Informatika Dan Sistem Informasi (JIFoSI), 1(1), 11–35. https://doi.org/10.3390/land13111878
Hossen, M. M., Rafi, M. S. M., & Alam, T. (2025). Distributed Random Forests for NIDS with Edge and Global Model Aggregation. 2025 International Conference on Electrical, Computer and Communication Engineering (ECCE), 1–6. https://doi.org/10.1109/ECCE64574.2025.11013981
Idris, B., Halim, A. A., Abdullah, L. N., & Selimun, M. T. A. (2022). Comparison of Edge Detection Algorithms for Texture Analysis on Copy-Move Forgery Detection Images. International Journal of Advanced Computer Science and Applications, 13(10), 152–160. https://doi.org/10.14569/IJACSA.2022.0131021
Intyanto, G. W. (2021). Klasifikasi Citra Bunga dengan Menggunakan Deep Learning: CNN (Convolution Neural Network). Jurnal Arus Elektro Indonesia, 7(3), 80. https://doi.org/10.19184/jaei.v7i3.28141
Janna, N. (2025). Implementasi Template Matching Dan Segmentasi Citra Untuk Deteksi Keabsahan Dan Denominasi Uang Kertas Pada Raspberry Pi. Jurnal Informatika Dan Teknik Elektro Terapan, 13(2). https://doi.org/10.23960/jitet.v13i2.6547
Jing, J., Liu, S., Wang, G., Zhang, W., & Sun, C. (2022). Recent advances on image edge detection: A comprehensive review. Neurocomputing, 503(July), 259–271. https://doi.org/10.1016/j.neucom.2022.06.083
Karypidis, E., Mouslech, S. G., Skoulariki, K., & Gazis, A. (2022). Comparison Analysis of Traditional Machine Learning and Deep Learning Techniques for Data and Image Classification. WSEAS Transactions on Mathematics, 21, 122–130. https://doi.org/10.37394/23206.2022.21.19
Kong, W., Chen, J., Song, Y., Fang, Z., Yang, X., & Zhang, H. (2023). Sobel Edge Detection Algorithm with Adaptive Threshold based on Improved Genetic Algorithm for Image Processing. International Journal of Advanced Computer Science and Applications, 14(2), 557–562. https://doi.org/10.14569/IJACSA.2023.0140266
Kumar Shah, B., Kedia, V., Raut, R., Ansari, S., & Shroff, A. (2020). Evaluation and Comparative Study of Edge Detection Techniques. IOSR Journal of Computer Engineering, 22(5), 6–15. https://doi.org/10.9790/0661-2205030615
Liantoni Febri. (2022a). Deteksi Tepi Citra Daun Mangga Menggunakan Algoritma Ant Colony Optimization. Seminar Nasional Sains Dan Teknologi Terapan, 3(February), 411–418.
Liantoni Febri. (2022b). Deteksi Tepi Citra Daun Mangga Menggunakan Algoritma Ant Colony Optimization. Seminar Nasional Sains Dan Teknologi Terapan, 3(February), 411–418.
Lynn, N. D., Sourav, A. I., & Santoso, A. J. (2021). Implementation of Real-Time Edge Detection Using Canny and Sobel Algorithms. IOP Conference Series: Materials Science and Engineering, 1096(1), 012079. https://doi.org/10.1088/1757-899x/1096/1/012079
Mapoka, T. T., Kwenda, C., & Bakasa, W. (2024). A Random Forest and Edge Vector Ensemble Model for Segmenting Aerial Satellite Forest Images. Advances in Artificial Intelligence and Machine Learning, 4(4), 3135–3160. https://doi.org/10.54364/AAIML.2024.44180
Maximillian, L., Riti, Y. F., Agung, M. A., & Palis, Y. J. (2023). Perbandingan Algoritma Sobel dan Canny untuk Deteksi Tepi Citra Daun Lidah Buaya. Komputa : Jurnal Ilmiah Komputer Dan Informatika, 12(2), 69–79. https://doi.org/10.34010/komputa.v12i2.10997
Moelya, M. S., Ramadhan, P. S., & Suryanata, M. G. (2024). Perbandingan Metode Canny, Sobel, Dan Laplacian of Gaussian Dalam Mendeteksi Tepi Citra Objek Bergerak. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 3(4), 450–460. https://doi.org/10.53513/jursi.v3i4.6466
Muchtar, M., Pasrun, Y. P., Rasyid, R., Miftachurohmah, N., & Mardiawati, M. (2024). Penerapan Metode Naïve Bayes Dalam Klasifikasi Kesegaran Ikan Berdasarkan Warna Pada Citra Area Mata. Jurnal Informatika Dan Teknik Elektro Terapan, 12(1), 611–617. https://doi.org/10.23960/jitet.v12i1.3879
Mulyani, Y., Septiangraini, D., Muhammad, M. A., & Nama, G. F. (2022). Comparison Study of Convolutional Neural Network Architecture in Aglaonema Classification. International Journal of Electronics and Communications Systems, 2(2), 75–83. https://doi.org/10.24042/ijecs.v2i2.13694
Naufal, M. F., Kusuma, S. F., Tanus, K. C., Sukiwun, R. V., Kristiano, J., Lieyanto, J. O., & R., D. C. (2021). Analisis Perbandingan Algoritma Klasifikasi Citra Chest X-ray Untuk Deteksi Covid-19. Teknika, 10(2), 96–103. https://doi.org/10.34148/teknika.v10i2.331
O’Mahony, N., Campbell, S., Carvalho, A., Harapanahalli, S., Hernandez, G. V., Krpalkova, L., Riordan, D., & Walsh, J. (2020). Deep Learning vs. Traditional Computer Vision. Advances in Intelligent Systems and Computing. Springer Nature Switzerland AG, 943(Cv), 128–144.
Owotogbe, J. S., Ibiyemi, T. S., & Adu, B. A. (2020). Edge Detection Techniques on Digital Images - A Review. International Journal of Innovative Science and Research Technology, 4(11), 329–332.
Paramastri, T. A., Mutiara, A. B., Haryatmi, E., & Fahrurozi, A. (2024). The Role of Edge Detection in Improving Convolutional Neural Network Accuracy and Robustness: An Overview. 2024 Ninth International Conference on Informatics and Computing (ICIC), 1–6. https://doi.org/10.1109/ICIC64337.2024.10956558
Peng-o, T., & Chaikan, P. (2021). High performance and energy efficient sobel edge detection. Microprocessors and Microsystems, 87, 104368. https://doi.org/https://doi.org/10.1016/j.micpro.2021.104368
Putra, F. P., & Susilawati, I. (2021). Prototipe Sistem Deteksi Ketersediaan Lahan Parkir Menggunakan Metode Algoritma Canny Edge. JISAIVol, 1(2), 94–99.
Ranjan, R., & Avasthi, V. (2023). Edge Detection Using Guided Sobel Image Filtering. Wireless Personal Communications, 132(1), 651–677. https://doi.org/10.1007/s11277-023-10628-5
Rijal, M., Yani, A. M., & Rahman, A. (2024). Deteksi Citra Daun untuk Klasifikasi Penyakit Padi menggunakan Pendekatan Deep Learning dengan Model CNN. Jurnal Teknologi Terpadu, 10(1), 56–62. https://doi.org/10.54914/jtt.v10i1.1224
Rizan, R. U. B. (2025). Enhancing Edge Detection in Images Using Ant Colony Optimization. In P. Meesad, S. Sodsee, W. Jitsakul, & S. Tangwannawit (Eds.), Proceedings of the 21st International Conference on Computing and Information Technology (IC2IT 2025) (pp. 182–192). Springer Nature Switzerland.
Rumui, N., Mualo, A., Rahayaan, J., Batjo, L., & Mokansi, M. (2025). Analisis Komparasi Model Deep Learning CNN dengan VGG16 dalam Klasifikasi Jenis Bunga. Informatik : Jurnal Ilmu Komputer, 21(1), 35–44. https://doi.org/10.52958/iftk.v21i1.11105
Santoso, E. L., Setyati, E., & Kristian, Y. (2019). Klasifikasi Citra Daun Memanfaatkan Angular Partition, Edge Detection dan Neural Network. Journal of Intelligent System and Computation, 1(1), 27–33. https://doi.org/10.52985/insyst.v1i1.32
Sanu, J. G. M. (2025). Identifikasi Kematangan Buah Nanas Menggunakan Citra Digital Dengan Metode K-Nearest Neighbor (K-Nn) Dan Support Vector Machine (Svm). HOAQ (High Education of Organization Archive Quality) : Jurnal Teknologi Informasi, 16(1), 35–48. https://doi.org/10.52972/hoaq.vol16no1.p35-48
Saputra, R., Erlanda, H., & Ramadhanu, A. (2024). Klasifikasi Citra Dalam Identifikasi Jeruk Nipis dan Jeruk Mandarin Menggunakan Convolutional Neural Network (CNN). JITSI : Jurnal Ilmiah Teknologi Sistem Informasi, 5(4), 213–218. https://doi.org/10.62527/jitsi.5.4.282
Sholehurrohman, R., & Habibi, M. R. (2023). Implementasi Restorasi Citra Derau Salt & Pepper, Gaussian Dan Speckle Secara Spasial Dengan Matlab. Jurnal INSTEK (Informatika Sains Dan Teknologi), 8(2), 369–379. https://doi.org/10.24252/instek.v8i2.42967
Sinaga, B., Manurung, J., Silalahi, M. H., & Ramen, S. (2021). Deteksi Tepi Citra Dengan Metode Laplacian of Gaussian Dan Metode Canny. Jurnal Sains Komputer & Informatika (J-SAKTI, 5(September), 1066.
Singh, N. K. (2021). Implementation of sobel edge detection using MATLAB. Recent Trends in Communication and Electronics, July 2020, 120–123. https://doi.org/10.1201/9781003193838-23
Sulistyo, W. Y., Arifah, A. N., & Pratiwi, S. A. (2025). Deteksi Tepi Menggunakan Metode Operator Prewitt dan Kirsch pada Citra Uang Kertas. Jurnal Informatika: Jurnal Pengembangan IT, 10(1), 237–245. https://doi.org/10.30591/jpit.v10i1.6292
Tan, Y. C., Duarte, L., & Teodoro, A. C. (2024). Comparative Study of Random Forest and Support Vector Machine for Land Cover Classification and Post-Wildfire Change Detection. Land, 13(11). https://doi.org/10.3390/land13111878
Tenekeci, M. E., Abdulazeez, S. T., Karadağ, K., & Modanli, M. (2025). Edge detection using the Prewitt operator with fractional order telegraph partial differential equations (PreFOTPDE). Multimedia Tools and Applications, 84(13), 12329–12345. https://doi.org/10.1007/s11042-024-19440-0
Thesing, T., Feldmann, C., & Burchardt, M. (2021). Agile versus Waterfall Project Management: Decision model for selecting the appropriate approach to a project. Procedia Computer Science, 181, 746–756. https://doi.org/10.1016/j.procs.2021.01.227
Tian, R., Sun, G., Liu, X., & Zheng, B. (2021). Sobel edge detection based on weighted nuclear norm minimization image denoising. Electronics (Switzerland), 10(6), 1–15. https://doi.org/10.3390/electronics10060655
Wang, L., & Sun, Y. (2021). Improved Canny edge detection algorithm. 2021 2nd International Conference on Computer Science and Management Technology (ICCSMT), 414–417. https://doi.org/10.1109/ICCSMT54525.2021.00081
Winanti, N. A., Martiyaningsih, D. P., Soemedhy, C. A. A., & Athiyah, U. (2023). Analisis Klasifikasi Citra Kanker Kulit dengan Random Forest. Remik, 7(1), 506–515. https://doi.org/10.33395/remik.v7i1.12102
Xian, R., Xiong, X., Peng, H., Wang, J., de Arellano Marrero, A. R., & Yang, Q. (2024). Feature fusion method based on spiking neural convolutional network for edge detection. Pattern Recognition, 147, 110112. https://doi.org/https://doi.org/10.1016/j.patcog.2023.110112
Yilmaz, A., Demircali, A. A., Kocaman, S., & Uvet, H. (2020). Comparison of Deep Learning and Traditional Machine Learning Techniques for Classification of Pap Smear Images. http://arxiv.org/abs/2009.06366
Yuan, S., Zhao, W., Deng, J. D., Xia, S., & Li, X. (2024). Quantum image edge detection based on Laplacian of Gaussian operator. Quantum Information Processing, 23(5), 0–21. https://doi.org/10.1007/s11128-024-04392-z
Zangana, H. M., Mohammed, A. K., & Mahmood Mustafa, F. (2024). Advancements in Edge Detection Techniques for Image Enhancement: A Comprehensive Review. International Journal of Artificial Intelligence & Robotics (IJAIR), 6(1), 29–39. https://doi.org/10.25139/ijair.v6i1.8217
Zhang, X., Hao, S., Xu, C., Qian, X., Wang, M., Jiang, J., Yang, C. C., Soh, C. S., Yap, V. V., Al, M. F., Saleh, A. I., Abulwafa, A. E., Rahmawy, M. F. Al, Gao, Y., Xu, A., Hu, P. J., Cheng, T., Arar, Ö. F., Ayan, K., … Dholay, S. (2015). Statistics-based segmentation using a continuous-scale naive Bayes approach. Procedia - Procedia Computer Science, 109(3), 271–277. https://doi.org/10.1016/j.compag.2014.10.009
Zulfikri, M., Syahrir, M., & Kusuma, W. (2025). Implementasi Metode Deteksi Tepi Untuk Segmentasi Citra Wajah Secara Real Time Implementation of Edge Detection Method for Real Time Facial Image Segmentation. xx(x), 17–27.
Published
2025-07-30
How to Cite
Ruswanti, D., Purnama, C. R., & Gumelar, M. (2025). Edge Detection Algorithm and Image Classification in Digital Image Processing. ICEETE Conference Series, 3(1), 305-314. https://doi.org/10.36728/iceete.v3i1.257